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depression and healthy controls to find behavioural markers for depression.
Different methods such as, calculating the correlation between the mood of the
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A correlation between patient mood and behavioural changes was found. The
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considering the small sample size. The kh-segmentation method is a valid tool to
be used in future research.
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Psykisk ohälsa utgör en av de största sjukdomsbördorna i världen. Därför är det
viktigt att använda effektiva förebyggande metoder och förbättra behandling av
patienter. Bestämning av digitalfenotyp är ett nytt studieområde där bärbara- och
konsumentenheter används för att söka efter nya biomarkörer och fenotyper.

Denna avhandling använder data från en digitalfenotypstuide bestående av patienter
med depression och friska kontroller för att hitta beteendemarkörer för depression.
Olika metoder så som att, beräkna korrelationen mellan försökspersonernas humör
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Ett samband mellan patientens humör och beteendemässiga förändringar hittades.
Klassificeringen av patienter och kontroller med hjälp av linjära diskriminan-
tanalysen och beslutträdsinlärningen hade en noggrannhet på 0,74-1,0, vilket
är tillfredsställande med tanke på den begränsade provstorleken. För framtida
forskning är kh-segmentering ett giltigt verktyg.

Nyckelord: Bestämning av Digitalfenotyp, Beteendemönster, Maskininlärning,
Mentalhälsa



iv

Preface
It has been a couple of strange years. The Covid-19 pandemic hit, and everything
changed. I find it ironic that I have learnt so much about mental health and then
suffered from a burnout myself, which led me to take a long break from my thesis.
Now when I am finally graduating, I have not only learnt a lot from my studies,
but I have also learnt more about myself and that I should be more kind to myself.
I would not have come this far without support, and I have spent much time on
thinking about all the people that have affected my life in a positive way.

I would like to thank:

My parents and my brothers.

My grandparents, aunts, and uncle.

My friends that I got to know from living in Vaasa, Turku, and Espoo.

My online friends that kept me company so many evenings when there was
nothing else to do than play games.

My remote study group and the Pomodoro timer.

The Complex Systems research group for being so inspiring.

My supervisor professor Aris Gionis for all guidance and suggestions.

My advisor Talayeh Aledavood not only for supporting me, but also for being
such a good role model and not giving up on me.

Finally, I would like to thank Magnus, for believing in me when I did not and
helping me move forward when I did not have the strength to.

The summer cottage, 16.7.2021

Anna L. I. Hakala



v

Contents
Abstract ii

Abstract (in Swedish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1

2 Background 3
2.1 Behavioural patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Quantification of behavioural patterns using digital footprints 3
2.1.2 Digital phenotyping . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Mental health disorders . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Patient Health Questionnaire, PHQ-9 . . . . . . . . . . . . . 5

3 Research material and methods 7
3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 The data collection platform . . . . . . . . . . . . . . . . . . 7
3.1.2 The sensors and their features . . . . . . . . . . . . . . . . . . 9
3.1.3 Questionnaires and surveys . . . . . . . . . . . . . . . . . . . 13
3.1.4 The Pilot study . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 The use of battery data to find missing data . . . . . . . . . . 15
3.2.2 The selection of subjects . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Aggregation of data . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Searching for correlations between the PHQ-9 score and the sensor data 21
3.4 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 25
3.4.3 Decision Tree Classification . . . . . . . . . . . . . . . . . . . 26
3.4.4 Validation of the classifier . . . . . . . . . . . . . . . . . . . . 27
3.4.5 kh-segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results 30
4.1 Correlation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 k-means clustering results . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Linear Discriminant Analysis and Decision Tree Classification results 37
4.4 kh-segmentation results . . . . . . . . . . . . . . . . . . . . . . . . . 55



vi

5 Conclusions and discussion 71
5.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Linear Discriminant Analysis and Decision Tree . . . . . . . . . . . . 72
5.4 kh-segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Summary 77

References 78

A K-means clustering pair plots 84



vii

Abbreviations

Abbreviations
BIC Bayesian information criteria
LDA Linear Discriminant Analysis
PCA Principal Component Analysis
PHQ-9 Patient Health Questionnaire



1 Introduction
In 2018, 80 % of Finns aged between 16 and 89 had a smartphone in personal use
[1]. These small computers can sense the user’s surroundings, as well as, monitor the
actual usage of the smartphone [22]. Thus by analyzing the data, the researcher can
get insight of the user’s individual and social behaviour. For example, researchers can
follow how the user makes calls, writes texts, and uses social media and other apps.
Smartphones also contain the opportunity for more low-level sensor measures, for
example, GPS, noise and light. If this data is collected, the smartphone can be used
to monitor and analyse behavioural patterns in the user. Behaviour is something that
has been tracked by, for example, advertising firms to suggest personalized ads. The
smartphones gives us a new way to follow a person’s life, by collecting and analysing
data from it.

A promising new field of research is mobile mental health [18][29][64]. Mental
health is an important part of everyone’s life; good mental health is fundamental
for a persons well-being, whereas, mental illnesses affects oneself and people around
them negatively. Mental health disorders affect 18.8 % of Finnish citizens, according
to the OECD report from 2018, which is the highest prevalence in the EU [44]. In
Finland, mental health problems lead to a cost of 11 billion euros per year. Patients
have traditionally had face-to-face meetings with a mental health professionals. In
these meetings they discuss the patients symptoms and behaviour from a subjective
view. The clinician then has to make a diagnosis based on what is said during the
meetings. Mobile mental health technologies can provide the clinician and patient
with objective data, gathered outside the meetings, that can be analysed. Analysis
would bring forth a deeper understanding of the patients daily life, which further
opens up options to treat a patient based on data gathered in the patients’ own
environment. The data gathered is not affected by recall biases [29]. Recall bias is
the error that occurs due to that a person is not able to accurately remember an
event or past experience [32]. In the case of mental health, a recall bias would be the
patient having problems to remember what has happened between the meetings with
the clinician, often resulting in inaccuracy. Analysing gathered data enables new
options to recognize behaviour and mood changes and helps adjusting the treatment
accordingly [18].

Mobile mental health is a broad concept. Including apps with active and passive
data collection. Active data requires user actions, whereas passive data is automati-
cally collected by a device [66]. As well as, apps that monitor the user for diagnostic
purposes or apps that do active interventions. Being able to monitor the effect of
daily behaviors on mood could further help to predict and classify the state of a
patient.

This thesis aims to explore possible analysis methods for passive mobile data
collected in Mobile Monitoring of Mood (MoMo-Mood) Pilot study [68]. Thus
improving the evidence-based digital health research within mental health, by trying
to standardized measurements and outcomes. One concrete goal is to classify patients
and controls from the behavioural patterns found in the collected passive mobile data.
A second goal is to segment the data to detect the changes in behaviour. The analysis
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results could hopefully help the patient and the clinicians to better understand the
changes in the patients mood, for example, has it improved or gotten worse. Giving
the clinician and the patient the possibility to see and discuss when changes have
occurred and why, could be a good tool to improve the treatment plan. Firstly, an
exploration of the passive data is done. From there a search for correlation between
the changes in behaviour and mood is performed. Secondly, machine learning is
used to classify if a person is part of the control group or a patient. Lastly, another
method was examined, the kh-segmentation, which is used to look for changes in
behaviour. The calculations presented in this thesis are performed using computer
resources within the Aalto University School of Science “Science-IT” project.

The rest of this thesis is organized as follows. In Section 2 behavioural patterns
are described and how digital devices create these patterns in personal usage. The
section also explains how these behavioural patterns can be used to detect mental
health disorders. In Section 3 the data used i this thesis is described and the methods
are presented. Section 4 describes the experimental results. The 5 Section does
discusses the results and does conclusions. Section 6 is a summary.
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2 Background
This chapter introduces the interdisciplinary fields included in this thesis. First,
the potential use of behavioural patterns acquired from sensor data is presented in
Section 2.1. Second, a introduction to mental health will be given in Section 2.2.

2.1 Behavioural patterns
Individuals usually exhibit persistent behavioral patterns [9], which can be monitored
and discovered in several different ways [5]. The more traditional way is to gather
information via self-report questionnaires and observation in an artificial environment
setting [51]. Nowadays people interact with and carry digital devices that can monitor
the individual seamlessly, this data can be seen as behavioural information [45]. This
section will introduce how digital devices can be used to get an insight into individuals
behavior.

2.1.1 Quantification of behavioural patterns using digital footprints

Device and user interactions can be collected as data. This type of data is called
digital footprints [45][46]. A definition of digital footprints is "the digital traces
that people leave while interacting with cyberphysical spaces" [69]. Gathering and
combining the data from devices open up the possibility to explore individual-level
behaviour [14]. For example, a smartphone can tell about the social interactions made
via applications and phone calls, the GPS data can tell if the individual has been
traveling and even how frequently the screen is being turned on and off can tell about
behavioural patterns [7][8]. There are several studies showing how human activity
usually appears in patters, for example, in bursts of social activity both on individual-
level and inter-individual interactions [15][53][40]. Even though the data is gathered
on an individual-level the data can be combined into a network of interactions between
individuals, making analyzing group behaviour, social interaction and community
dynamics, possible [15][53][40][14]. Depending on the device, the data gathered can
be used to analyze, for example, social behaviour to human health to activity and
sleep rhythms [9][10][38].

2.1.2 Digital phenotyping

The definition of digital phenotyping used in this thesis is "moment-by-moment quan-
tification of the individual-level human phenotype in situ using data from personal
digital devices given" coined in [65]. This means that we aim to quantify human
behavior in a natural environment, that is in their everyday life. By measuring
human behaviour we can, for example, look for behavioural markers which indicate
out health or disease.

Digital phenotyping is a fairly new field as it has been made possible through the
era of digitalization. We have not had the sensors nor the computational capacity to
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gather and analyse data to a sufficient extent until recently. As digital components
have become smaller, the computational capacity has also grown. We can now store
huge amounts of data that can be processed using different methods to get results.
This is all thanks to the invention and further development of the transistor, which
is observed in the Moore’s law [42].

As mentioned in Chapter 1, the smartphone has become a part of our daily lives
and in 2018, 80 per cent of Finns aged between 16 and 89 had a smartphone in
own use[1]. Smartphones is also often a very personal device mostly used by one
person. The smartphone contains several digital sensors that enable the collection
of different data, for instance, GPS, accelerometer, social interaction via calls and
messaging, ambient noise [6][66]. Gathering this data when in a natural day-to-day
environment gives us the opportunity to analyze complex longitudinal multivariate
data. Digital sensors can also be found in other devices such as watches, bed sensors
and even clothing. The most important properties of these devices is that they are
small enough to conveniently collect data.

Data can also be gathered through active participation by the user, for example,
by answering surveys [66]. The data collected in a way that demands subject active
participation is called active data and data collected automatically without subject
engagement for the purpose of the study is called passive data [66]. By collecting
both active and passive data, it is possible to connect, for example, surveys about
daily exercise with actual GPS and accelerometer data. Digital phenotyping could
approach analysing active and passive data using statistical tools and machine learn-
ing to find biomedical and clinical insights[45]. To be able to quantify the results,
the quality of the raw data, the features and methods used need to be chosen wisely.
For example, using a supervised machine learning method instead of a complex deep
learning method, makes it easier for the scientist to follow the steps of the method
and understand how the result is shaped[26].

Digital phenotyping has become a token of interest especially in the field of mental
health [45][27][30][17]. This thesis aims to find quantifiable observations within the
passive data, which can be linked with the mental health condition of the patients
and then further used as features in training the machine learning model. The models
could, for example, predict future mood or classify the subject into a group. The
latter one is one of the goals for this thesis. The model is intended to classify the
subject either as a patient or as a healthy control. The methods are described in
Chapter 3 and the results are presented in Chapter 4.

2.2 Mental health disorders
First, a brief introduction to mental health in general will be given. Then the
potential use of behavioural patterns for mental healthcare is presented.
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The WHO [47] defines mental health as “a state of well-being in which the in-
dividual realizes his or her own abilities, can cope with the normal stresses of life,
can work productively and fruitfully, and is able to make a contribution to his or her
community”.

The OECD [44] says that, mental health is an important part of everyone’s life;
good mental health is fundamental for a persons well-being. Mental disorders can
affect all people, regardless of gender, age and background. Mental illness makes it
hard to carry out our daily lives. In Europe, for example, tens of millions EU citizens
endure one mental health problem at some point of their life [44]. There occurs
tens of thousands cases of death directly due to mental health disorders or due to
suicide [44]. Mental illness can impact a persons education, work and social activity.
Finland is the EU country with highest prevalence of mental health disorders, with a
rate of 18.8 %, according to the OECD health report from 2018 [44]. Mental health
disorders comprise one of the highest burdens of disease in Finland and therefore
it is important to use prevention methods and to improve the treatment of the patients.

The field of medicine is undergoing a transformation due to big data and the
methods available, such as machine learning, which transform the data into signifi-
cant clinical knowledge. We already have and are to see improvements in prognosis,
displacement of work and improvement in diagnostic accuracy [43]. There is also
opportunities within psychiatry, which is the medical specialty devoted to the diag-
nosis, prevention, and treatment of mental disorders.

There have been other studies using mobile phone sensors to create context-aware
systems. For example, [18], conducted in 2011 is one of the first ecological momentary
interventions for unipolar depression, as well as, attempts to use context sensing
to identify mental health-related state. The results showed the feasibility of the
system. Another study [25], compared a smartphone based mood state and mood
state change detection system to self-assessment questionnaires. Using data from 9
patients and a total of 800 days, they showed that the automatic detection is much
closer to the objective psychiatric diagnosis.

The pilot study data used in this thesis is from major depressive disorder patients
and healthy controls collected in Mobile Monitoring of Mood (MoMo-Mood) Pilot
study [68]. The main study, which is currently being conducted, data consists of
patients with Major Depressive Disorder (MDD), Bipolar Syndrome (BD), Borderline
Personality disorder (BPD) and healthy controls. The pilot study is described more
in Section 3.1.4.

2.2.1 Patient Health Questionnaire, PHQ-9

This section discusses the importance of the Patient Health Questionnaire-9 (PHQ-
9) and how the results of the questionnaires can be useful to track behavioural changes.
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PHQ-9 score Depression severity
0-4 None
5-9 Mild
10-14 Moderate
15-19 Moderately severe
20+ Severe

Table 1: PHQ-9 score and depression severity.

The PHQ-9 is the 9-item depression module from the full Patient Health Ques-
tionnaire (PHQ) [59][35]. It is used for screening, establishing depressive disorder
diagnoses, monitoring and also measuring the severity of depression. The PHQ-9
asks questions about the severity of depression symptoms for the past 2 weeks. Each
question asks how often have you felt this symptom and is scored between 0 to 3, "not
at all" to "nearly every day". The PHQ-9 total score ranges from 0 to 27. The PHQ-9
scores of 5, 10, 15, and 20 represent the limit for mild, moderate, moderately severe,
and severe depression, as shown in table 1. The presence of 5 or more symptoms
and a score of more than 10 is criteria for major depression.

PHQ-9 is a useful tool, but is dependent of the patients retrospective recall [62].
The possibility to monitor the subjects behaviour via the smartphone could reduce
the recall bias. A study [67] investigating major depressive disorder and use of
smartphones to track the PHQ-9 score, showed that the smartphone collected scores
both had a high adherence and correlated with the pen and paper PHQ-9 scores.
It further says that the scores were higher for the smartphone collected scores and
more subjects answered that they had suicidal thoughts.
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3 Research material and methods
The previous chapter presented the problems and opportunities of using behavioural
data acquired via sensors for mental healthcare. This chapter describes data and
methods implemented in the thesis. Sections 3.1, 3.2 and 3.2.1 describe the data
and the methods implemented for preprocessing of the data. Section 3.3 provides
the methods for choosing the features to be implemented using machine learning.
Sections 3.4 and 3.5 present the machine learning methods for classifying patients
and for evaluating the results.

3.1 The Data
The data used in this thesis is from the MoMo-Mood pilot [68] MoMo-Mood study
run at HYKS, the Helsinki University Central Hospital. The data is gathered from
smartphone apps, actigraph devices and bed sensors used by patients with mental
disorders as well as healthy controls. The data is of a time series type, which means
that the data points are indexed in time order. The data can be divided into two
categories active data and passive data. Active data requires active participation
from the subject, for example, the subject answers a questionnaire about how he/she
is feeling. Passive data is generated automatically through sensors in the smartphone,
such as, communication or GPS.

One of the strengths of the data is that it contains subjects with data from a long
period of time. For example, there exists subjects that have attended the study for
up to eleven and fourteen months. Therefore, it is possible to study more long term
changes in behaviour. The time stamps for several of the features are also recorded
with fairly short intervals, providing us with detailed data. However, a downside of
the data is that there are only thirty-seven subjects in the pilot study, which could
be seen as too few for many modelling methods. Nevertheless, there are methods
that manage to create working models from a small sample size.

3.1.1 The data collection platform

The data used in this thesis was collected with a digital platform called Koota [6],
which is a research data collection system based on the Non-Intrusive Individual Mon-
itoring Architecture, Niima, which is designed especially for mental health studies [6].
Koota can be used in any kind of study requiring multi-sensor and/or multi-device
data collection from human participants. The three main use cases are individuals
actively collecting their own data, collecting data from many subjects and a hybrid
of these were the individual collects own data and donates it to research to be reused.
There are a lot of advantages in collecting data on an individual’s daily life and
behavior, for example, the data is not affected by recall biases. However, as the
data can be seen as very private, this opens up the possibility of privacy breaches.
The paper, [6], addresses the problem of collecting data for only one study and also
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presents a platform which makes it possible to reuse data in other studies while
keeping the privacy of the participants. The platform has three key design features,
flexibility of access control, flexibility of data sources and first-order privacy protection.

Flexibility of access control makes it possible to conduct several studies with the
same data without compromising the privacy.

Flexibility of data sources permits easy linking of the sources collected from
different studies.

First-order privacy protection is protection of the subjects who participate in a
study, but also prevents breaches of privacy regulations by the researchers. Meaning
that the researchers will not have enough access to breach the privacy of the subjects.

As mentioned in Section 3.1, this thesis uses passive data gathered from mobile
phones. This is possible due to Koota including the AWARE framework in the
application of the system [2]. The AWARE framework is a Android instrumentation
framework for logging, sharing and reusing smartphone content. It is open-source
and community supported and maintained by the University of Oulu in Finland.
The AWARE framework enforces privacy in their design. It does not log personal
information, such as phone numbers or contacts information. AWARE collects smart-
phone sensor and plugin data for the study being conducted. This data is uploaded
to the study servers. As the AWARE API is used for logging the smartphone data it
also restricts which data can be collected. The Section 3.1.2 will describe the sensors
and their features further.

Koota also collects active data in the form of surveys and questionnaires.
Another safety measure is that the platform performs hashing on the data first

on the device and a second time on the server. The hashing is done by adding a
secret salt [34].

The data collected on the server is not accessed directly by the researchers, but
must be pushed through converters [3]. These converters are study specific giving
the researchers only the data they need for the study they are conducting. These
converters may apply random transformations to the data for privacy and they can
also add higher aggregation levels before the data is extracted from the server.

As the data is longitudinal data containing timestamps for each action, it is a
privacy threat. The privacy threat is that if actions and timestamps are kept the
same, they can be more easily linked to the subject. For example, if someone knows
at which times a subject made calls, the person can easily find that subjects call data
and therefore also find other data in the database. The timestamps are therefore
also altered to prevent identification of subjects.

One last safety measure is that, there is not one single person who can have
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access to both the identities of the participants and the data about them. Data from
multiple sources coming from each participant is securely linked to their account on
the Koota platform and can later be anonymously accessed by the researchers.

Finally, researchers can access the data using niimpy [4], which is a Python pack-
age for managing individual-level data developed in the Niima project. The niimpy
package opens the databases, provides a querying shortcut for basic operations, as
well as, a few more high-level operations. The further pre-processing and actual
analysis of the subject data is done by the researchers.

3.1.2 The sensors and their features

There were several phone sensors used to collect data. This section will go through
them and explain what they are. The converters applied on the raw data will also
be described.

The data collection platform, described in Section 3.1.1, uses the AWARE frame-
work for passive smartphone sensing [22][2]. The research codes converters apply a
thin wrapper over the data collected via the AWARE framework. As mentioned in
Section 3.1.1, niimpy is a python package used to access the individual-level data
from the servers. The package contains functions that opens subject data into tables
and maps the raw data into better assembled data. These functions will be described
for the sensors that they apply. Niimpy also has functions for missing data and
subject selection, but these will be discussed in Chapter 3.2, about preprocessing.

The sensor data used in this thesis includes applications, battery, communication,
location, ambient noise and screen.

The applications sensor logs the usage of applications as well as the notifications
of applications, see table 3. It logs when the user turns on, changes or turns off the
application. The application name is logged, but the purpose of the application is
not given by AWARE. The definition and grouping of the applications is left for the
researcher analysing the data. Using niimpy, one can apply a mapping from the apps
data to groups, returning a dataframe with duration and count of application usage for
each group. The application groups are as follows; Sports, Games, Communication,
Social Media, News, Travel, Shop, Entertainment, Work/study, Transportation, and
Other.

The battery sensor logs phone power related data, including, when it is turned
on, turned off, rebooting, the battery level, if the phone is charging or discharging
and the battery health. The battery plays an important part in identifying missing
data, and further selection of data and subjects. This is described in Section 3.2.1.

The communication sensor logs calls and messages to and from the smartphone.
The AWARE framework saves the contacts with a unique ID which is encrypted. This
makes it possible for the researcher to see how much the subject communicates with
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Sensor Description
Battery The Battery sensor monitors battery information and

monitors power related events (e.g., phone shutting down,
rebooting). This sensor provides user-driven contexts,
such as initiating a charge and unplugging the device.

Screen The screen sensor monitors the screen statuses, such as
turning on and off, locked and unlocked.

Ambient noise This plugin measures the ambient noise (Hz, dB) as noisy
or silent moments. It adds the daily noise exposure on
the stream, showing the average dB and Hz per hour
throughout the day.

Locations The locations sensor provides the best location estimate
for the users’ current location, automatically. We have
built-in an algorithm that provides the user’s location
with a minimum battery impact. However, we offer
the flexibility to researchers to change how frequently
the location gets updated, the minimum accuracy and
others. In our endurance tests, we got a full day of
location updates (8h and higher, depending on device
usage) from the user with the default parameters..

Communication The Communication sensor logs communication events
such as calls and messages, performed by or received
by the user. This sensor does not record personal infor-
mation, such as phone numbers or contact information.
Instead, an unique ID is assigned that is irreversible
(SHA-1 encryption) but it is always the same for the
same source. It also provides higher level context on
the users’ calling availability and actions. Android does
not officially support messages content providers and
messages sensor functionality might break at some point.
If it does, contact us as we will try our best to fix it..

Applications The Applications sensor logs application and notifica-
tions usage on the device. It captures every time the
user changes from an application and keeps track of
what is running in the background. It may also monitor
any new application’s notifications and capture when an
application has crashed.

Table 2: Sensors as described by the AWARE framework documentation on their
website [2].

the same contact, but neither the server nor the researcher gets access to personal
information, such as, phone numbers. Niimpy gets the five most frequent contacts
for the chosen period of time and calculates the duration and amount of times calls
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Table field Field type Description
_id INTEGER Primary key, auto incremented
timestamp REAL Unixtime milliseconds since 1970
device_id TEXT AWARE device UUID
package_name TEXT Application’s package name
application_name TEXT Application’s localized name
is_system_app BOOLEAN Device’s pre-installed application

Table 3: Application sensor log fields as described by the AWARE framework
documentation on their website [2].

Table field Field type Description
_id INTEGER primary key, auto incremented
timestamp REAL unixtime milliseconds since 1970
device_id TEXT AWARE device UUID
battery_status INTEGER one of the Android’s battery status, phone

shutdown (-1) or rebooted (-2)
battery_level INTEGER the battery level, between 0 and SCALE
battery_scale INTEGER the maximum battery level
battery_voltage INTEGER the current battery voltage
battery_temperature INTEGER the current battery temperature
battery_adaptor INTEGER one of the Android’s battery plugged values
battery_health INTEGER one of the Android’s battery health values
battery_technology TEXT the battery chemical technology (e.g., Li-

Ion, etc.)

Table 4: Battery sensor log fields as described by the AWARE framework documen-
tation on their website [2].

have been made.

Table field Field type Description
_id INTEGER primary key, auto incremented
timestamp REAL unixtime milliseconds since 1970
device_id TEXT AWARE device UUID
call_type INTEGER one of the Android’s call types (1 – incoming,

2 – outgoing, 3 – missed)
call_duration INTEGER length of the call session
trace TEXT SHA-1 one-way source/target of the call

Table 5: Communication calls log fields as described by the AWARE framework
documentation on their website [2].

The locations sensor logs the GPS location estimate of the smartphone, see table
7. This data goes through transformations so that the privacy can be secured. The
data the researcher accesses is an aggregation for each day, where a day goes from
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Table field Field type Description
_id INTEGER primary key, auto incremented
timestamp REAL unixtime milliseconds since 1970
device_id TEXT AWARE device UUID
message_type INTEGER message type (1 – received, 2 – sent)
trace TEXT SHA-1 one-way source/target of the message

Table 6: Communication message log fields as described by the AWARE framework
documentation on their website [2].

04:00 to 04:00 the next day. The aggregation consists of daily movement in the of
total distance, the radius mean and location variance. The documentation however
defines the variables as follows; locstd is the radius of gyration of locations, after the
binning (meters), and radius_mean isn’t exactly a radius, but the longest distance
between any point and the mean location (both mean location and other points after
binning). The documentation also says that the radius_mean should be compared
to locstd to make sense.

Table field Field type Description
_id INTEGER primary key, auto incremented
timestamp REAL unixtime milliseconds since 1970
device_id TEXT AWARE device UUID
double_latitude REAL the location’s latitude, in degrees
double_longitude REAL the location’s longitude, in degrees
double_bearing REAL the location’s bearing, in degrees
double_speed REAL the speed if available, in meters/second over

ground
double_altitude REAL the altitude if available, in meters above sea

level
provider TEXT gps or network
accuracy INTEGER the estimated location accuracy
label TEXT Customizable label. Useful for data calibra-

tion or traceability

Table 7: Location log fields as described by the AWARE framework documentation
on their website [2].

The Ambient Noise is a plugin which records audio heard via the phone to
measures the decibel levels. The plugin does not log the audio recorded. The plugin
is set to record the surroundings every 30 minutes. The converter used for noise
creates the fields; is_silent, double_decibels, double_silence_threshold, double_rms,
double_frequency, and blob_raw. This is similar to the table 8. The double_decibels
is the loudness of noise recorded in the surroundings. The double_frequency is the
sound frequency in Hz. A dB threshold is set to determine if the surroundings are
silent or noisy at the recorded moment, this is shown in is_silent. To classify silent
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or not silent, the double_rms is calculated. The double_rms is the root mean square
error and is calculated using both double_frequency and double_decibels. From
here the preprocessing starts, see Section 3.2.

Table field Field type Description
_id INTEGER primary key auto-incremented
timestamp REAL unix timestamp in milliseconds of sam-

ple
device_id TEXT AWARE device ID
double_frequency REAL sound frequency in Hz
double_decibels REAL sound decibels in dB
double_RMS REAL sound RMS
is_silent INTEGER 0 = not silent 1 = is silent
double_silence_threshold REAL the used threshold when classifying be-

tween silent vs not silent
blob_raw BLOB the audio snippet raw data collected

Table 8: Noise log fields as described by the AWARE framework documentation on
their website [2].

The screen sensor logs the status of the screen, for example, when the phone
screen is turned on and off, or is locked and unlocked. The fields can be seen in
table 9. Note that screen flashes also return the on or off status when, for example,
a notification pops or an call is incoming. This is simple data, represented by 0,1,2
and 3, but when preprocessed and analysed behavioural patterns can be found.

Table field Field type Description
_id INTEGER primary key, auto incremented
timestamp REAL unixtime milliseconds since 1970
device_id TEXT AWARE device UUID
screen_status INTEGER screen status, one of the following: 0=off, 1=on,

2=locked, 3=unlocked

Table 9: Screen log fields as described by the AWARE framework documentation on
their website [2].

3.1.3 Questionnaires and surveys

Questionnaires and surveys give researchers a way to track changes in, for example,
mood, behaviour or opinion. This thesis used PHQ-9 questionnaire answers, where
the subject has answered questions reminiscing the past 14 days. PHQ-9 is described
in Section 2.2.1. This type of data is seen as active data, as the subjects has to
actively answer the questions about their mood. These questionnaires were conducted
through Web surveys via Koota. The PHQ-9 questionnaire was answered in the
beginning of the study and every 2 weeks after that. In this thesis the answers given
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by the subjects were seen as ground truth of their mood and used in the segmentation
part of the thesis, see Section 3.4.5.

3.1.4 The Pilot study

The pilot study [68] had fourteen patients with major depressive disorder and twenty-
three healthy controls, see figure ??. The participants were given devices that
monitored their sleep, activity and factors such as heart rate and respiration. The
participants also installed the smartphone app which gathers data on the smartphone
usage and the surroundings. The application also pushed questionnaires which the
subjects could answer.

Table 10 shows the data gathered via the mobile application for each patient
and table 11 shows the data gathered for each control. The days with battery data
column shows how many days of possible gathered data there is. If the mobile phone
is on the app will gather battery data. The first goal of the thesis was to be able
to classify between patients and controls. For this enough location, screen, noise or
app data is needed. It is seen in table 10 that five patients have NaN values in their
location, screen, noise and app data, whereas one patient has one day of location
data and NaN in screen and noise. In this table NaN stands for not being able to
calculate the amount of gaps in the data, which means that there is no data. In
comparison 0 gaps mean that there are no gaps found. This is reinforced by the
days with battery data column, where the NaN is followed by no battery data. This
is further discussed in Section 3.2.1 under preprocessing. Table 11, has similarly
five controls with NaN values in location, screen, noise and app data. In conclusion
there seems to be possibly eight patients and eighteen controls available for the
classification part of the thesis.

The second goal for this thesis was to analyse how the mood changes with respect
to the behaviour patterns acquired from the mobile sensor data. In order to do
this, enough of PHQ-9 questionnaires has to be answered for each subject. To be
able to analyse change in mood the minimum requirement is two different PHQ-9
questionnaire scores, with adhering mobile sensor data. As previously discussed
in Section 3.1.3, the first PHQ-9 questionnaire is answered in the beginning of the
active phase, meaning that there is no passive data gathered yet to connect with the
first PHQ-9. Table 10, shows that eight patient have only answered the first PHQ-9
questionnaire and two patients have answered two PHQ-9 questionnaires. Table
11 has one control that has only the first PHQ-9 questionnaire answered and five
controls that have answered two PHQ-9 questionnaires. The same constriction for
location, screen, noise and app data applies for acquiring behaviour patterns, there
has to exist data to be able to analyse it. There seems to be possibly four patients
and fourteen controls available for analysing changes in the mood with regards to
behaviour patterns found in mobile data.

In the Results chapter 4 it is shown that the data amount is insufficient for proper
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verification for reaching both goals of the thesis. Therefor, the main study is used
for verification of the methods used on the pilot study.

number
of
PHQ9

days
with
battery
data

days
with
location
data

screen
gaps

noise
gaps

app
gaps

patient 1 1 0 NaN NaN NaN NaN
patient 2 1 0 NaN NaN NaN NaN
patient 3 1 0 NaN NaN NaN NaN
patient 4 1 0 NaN NaN NaN NaN
patient 5 1 0 NaN NaN NaN NaN
patient 6 1 20 17 9 0 0
patient 7 1 20 21 1 16 6
patient 8 1 585 394 181 3 350
patient 9 2 0 1 NaN NaN 0
patient 10 2 16 2 2 0 3
patient 11 3 79 30 16 1 2
patient 12 4 104 106 9 0 1
patient 13 6 241 121 6 7 2
patient 14 7 225 227 55 0 0

Table 10: Pilot study patient data statistics. A gap is no data for at least 6 hours.
NaN means that gaps could not be calculated because of no data.

3.2 Preprocessing
In this thesis missing data is verified with battery data, which is described in Section
3.2.1 and the selection of subjects is described in Section 3.2.2. Different aggregations
are performed on the data depending on the method. This preprocessing is partly
done with niimpy. The niimpy part is described in Section 3.2.3.

3.2.1 The use of battery data to find missing data

Missing data is a known problem in all data analysis. Since this thesis aims to detect
important features in subject behaviour, it is important to know why the data is
missing, as it can be part of the subjects behaviour. For example, if a sensor is out
of order or the data has not been correctly added to the database, it is missing data
as a result of a technical error, whereas, if the mobile phone was simply turned off
by the user it can be a manifestation of symptoms, taking form as a result of lack of
activity. In order to classify the gaps in the total data, the battery data was used as
a reference. Given that the battery sensor acquires data in regular intervals as long
as the phone is on, It can be assumed that the battery sensor is the most reliable
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number
of
PHQ9

days
with
battery
data

days
with
location
data

screen
gaps

noise
gaps

app
gaps

control 1 1 0 NaN NaN NaN NaN
control 2 2 0 NaN NaN NaN NaN
control 3 2 14 11 1 0 1
control 4 2 16 17 3 0 0
control 5 2 335 221 43 24 4
control 6 2 345 346 2 5 29
control 7 3 0 NaN NaN NaN NaN
control 8 3 19 18 5 0 9
control 9 3 34 36 2 0 0
control 10 3 63 62 1 0 0
control 11 4 0 NaN NaN NaN NaN
control 12 4 0 NaN NaN NaN NaN
control 13 4 81 82 4 0 80
control 14 5 66 27 27 0 17
control 15 5 75 66 23 1 97
control 16 6 92 26 15 13 5
control 17 7 440 134 74 241 38
control 18 8 145 135 29 0 14
control 19 8 161 123 58 0 7
control 20 8 223 117 6 1 22
control 21 12 253 252 54 42 118
control 22 15 365 220 59 16 86
control 23 16 364 53 10 0 0

Table 11: Pilot study control data statistics. A gap is no data for at least 6 hours.
NaN means that gaps could not be calculated because of no data.

sensor. Meaning that if there should be any data, there should also be battery data
and if there is no battery data, the phone could not have been on. The data gaps
were classified into real gaps, non-battery gaps and battery gaps. A real gap has
a gap in both the sensor and the battery data, meaning the phone most probably
has been turned off and therefore the data is missing. A non-battery gap has no
gap in the battery data and a gap in the sensor data, meaning that the sensor has
not collected any data, but it can be seen that the phone has been on. A battery
gap is a gap in the battery data, but there can be found sensory data, which would
indicate that battery data has somehow not been collected. There were no battery
gaps found in the whole data set, which further demonstrates the usability of battery
data as a missing data indicator. If missing battery data occurs, it would be assumed
that it is missing due to an error in the database. However, if this is not an error in
the database, it should be an error in the battery, which would be indicated in the
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battery health output. The battery health output is discussed further bellow.

Figure 1: Example of battery data. The plot shows how the battery level changes
between 0-100. Real battery gaps, missing battery data and sensor data, are seen
where the line is cut off.

Another indicator for missing data is a fast decrease of the battery level. A fast
decrease of the battery level indicates that the phone is being used and therefore other
sensory data should be available. As the data used in this work has been acquired in
Finland, it is important to take the possibility of cold weather into account. Cold
weather discharges the battery faster and can cause problems with the devices [13].
Moreover, heat may cause a problem as a battery that is exposed to heat for a
prolonged time will start to degrade the battery performance [13]. However, the
battery sensor outputs the battery health, so these kinds of battery statuses can be
noticed, if needed.

The last, but not least, aspect to consider with battery is the battery level. Was
the phone simply turned off due to an empty battery and was there something
significant draining the battery. It is interesting to see what the user was doing
before the battery was drained. The phone can also have been shut down by the
user. Is the turning off of the phone a significant behaviour? One scenario could
be that the phone was turned off with low battery and turned on with full battery,
indicating that the user wanted to charge the phone faster by turning it off. Another
scenario is that the user wants to take a distance from the phone.

One of the biggest decisions regarding the data and subject selection is deciding
how long can the smartphone be turned off until the data gap affects the analysis
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Gap Battery Sensor Description
Real gap X X A gap in both the sensor and the bat-

tery data. The phone has probably
been turned off and therefore the miss-
ing data.

Non-battery gap X X No gap in the battery data, but a gap
in the sensor data. No collected sensor
data, while the phone has been on.

Battery gap X X There can be found data for other sen-
sors, but not for the battery. There were
no cases of this in the data.

Table 12: A description of how the battery data is used to mark missing data.

and results. Consider the case where the subject turns off his or her phone each
night when going to bed. This would be seen as a huge gap that usually starts in
the evening and ends the following morning. This could be classified as a normal
behavioural data gap where the subject is probably staying in bed. Now consider
the case where the smartphone is turned off during the day for several hours. This
will cause a problem if the subject is active, for example, moves from one location to
another or talks to people, as this will not be seen in the sensor data collected by the
phone. This leaves out useful behavioural data, may skew the data and may force
the day to be discarded from the analysis. Decisions that have to be considered are
thus, how big gaps are allowed and are they allowed at anytime. These raise further
questions such as, is acceptable to turn off the phone for the night and how do we
know if a person is sleeping during the night.

For this thesis real gaps, where both battery and sensor data was missing, that
discard data were chosen as 6 hours or longer. This was considered as a suitable
time limit for the data and the methods used. For prediction of future PHQ-9 scores
data gaps could be a bigger issue.

3.2.2 The selection of subjects

When choosing subjects for the analysis, the main criteria are that there is enough
data over a time span and that there is not too much missing data during this
time period. The participants in the studies were supposed to have the application
installed on their phones for 6 months to one year. However, many of the participants
kept it installed for a longer time.

For the methods used in this thesis, the subjects selected needed to have an-
swered at least three PHQ-9 surveys. When analysing how the PHQ-9 answers have
changed between each taken survey, it is optimal that there exist data for each day
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fourteen days before the taken test. This is due to that the questionnaire asks the
participant to reflect over the past two weeks. However, analysis of changes can be
done, even though some days do not have sufficient amounts of data. A maximum
gap between taken questionnaires was considered, but not seen necessary, as the the
aim is analysing the behaviour connected to the PHQ-9 score.

To know if a subject has enough days of data, the days of battery data is first
checked. A day that has a gap in battery data which is larger than six hours is
discarded. This gaps in battery data occurs most often due to that the phone is
turned off. An often occurring behaviour for turning of the phone could be turning
the phone off for the night or turning the phone off when it is left in a locker. The
biggest issue when discarding data due to too much missing battery data, is that not
using the phone can be a behavioural pattern. Analysing this is however deemed out
of scope of this thesis.

As mentioned in Section 3.2.1, the battery data can be used to find gaps in
other data. However this can not be done for the location data, as it is given as
an aggregation for one day. Due to this location data is simply seen as days with
and without data. The Ambient noise sensor is activated every 30 minute, so if the
recording is not performed for a gap of six hours the data is discarded. The other
sensors create timestamps when an action is triggered, for example, screen is turned
on, a call is answered or an application is being used. For these sensors, discarding
is applied if the gaps in the data are larger than six hours.

In this thesis one of the aims was to analyse which sensors and features are
good indicators for classifying and showing behavioural changes in mental health
patients. This means that a participant that has, for example, sufficient screen data,
but insufficient location data will be accepted when analysing only screen data. This
applies for all sensor data that are not discarded.

3.2.3 Aggregation of data

Koota provides the data in the form of sqlite databases. The niimpy package contains
functions that open the sqlite databases and do basic querying. It also has more
high-level functions, such as basic preprocessing/aggregation, visualizing data quality,
and other transformations. The rest is done by the researcher.

The sensor data used in this thesis includes applications, battery, communication,
location, ambient noise and screen. First the high level niimpy functions will be
described for the sensors that apply, and then the different aggregations are discussed.

The niimpy Python package processes individual-level data, meaning the code
analyses one subject at a time. The high-level functions used for preprocessing in
this thesis will be described bellow.

The app duration function in niimpy returns a table with the usage duration and
amount of times an app group was used during a day. The apps are grouped as follows;
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Method Interval Study data Groups Aggregation
Correlation
between
sensors
and mood

2 weeks pilot compares correla-
tion of individual
subjects, patients,
controls, all sub-
jects

mean, median, stan-
dard deviation, mini-
mum, maximum

k-means
clustering

1 week pilot the method creates
own clusters, where
a subject is assigned
to a group

mean, median, stan-
dard deviation

Linear dis-
criminant
analysis

monthly pilot classifies subject
into patient or
control

mean, median, stan-
dard deviation

kh-
segmentation

daily for
2 weeks

pilot,
(main)

individual subjects sum of day

Table 13: Short summary of the methods and the preprocessing.

Sports, Games, Communication, Social Media, News, Travel, Shop, Entertainment,
Work/study, Transportation, and Other.

As mentioned earlier in Section 3.1.2, the battery plays an important part in
identifying missing data, and further selection of data and subjects. This is described
in Section 3.2.1.

For communication niimpy gets the five most frequent contacts for the chosen
period of time and calculates the duration and amount of times calls have been made.
It also returns the duration used and count on different communication events.

The location converter preprocesses the data enough for analysis, see Section
3.1.2.

The noise function in niimpy returns a table with the daily values for the average
decibels, average frequency, the number of times when there was noise in the day,
number of times when there was a loud noise during the day (defined as higher than
70dB), and number of times when noise matched the speech noise level and frequency
(where frequency is between 65Hz and 255Hz, and dB higher than 50).

The screen is grouped into transitions between the states on to off, off to on, off
to in use, and irrelevant. The duration and number of these events during a day are
returned by the preprocessing function in niimpy.

The data was aggregated into groups of individual subjects, controls, patients
and all subjects. The data was also split into intervals of one day, fourteen days
and all data for each subject. The data was further aggregated by calculating the
mean, standard deviation, minimum value and maximum value for each subject. The
aggregation differs depending on the method, as seen in table 13. The main methods
were search for correlation between PHQ-9 score and sensors, k-means clustering,
linear discriminant analysis, and kh-segmentation.
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3.3 Searching for correlations between the PHQ-9 score and
the sensor data

One of the main objectives of this thesis is to find quantifiable observations within
the passive data, which can be linked with the health condition of the patients and
then further used as features in training the machine learning model. This is a reason
for why the correlations between the PHQ-9 questionnaire score and passive data
was calculated. It gives an insight in selecting features for the machine learning part.

The Pearson product-moment correlation was first developed in 1895 [48]. Correla-
tions can indicate a predictive relationship between variables [36], which is applicable
to finding passive data patterns that decrease or increase the PHQ-9 score. The
result of correlation is called a correlation coefficient and varies between -1 and 1,
where a correlation coefficient close to -1 means that as one variable gets larger the
other one gets smaller, a correlation coefficient close to 1 means that as one variable
gets larger the other one gets larger and a correlation coefficient close to 0 means
that there is no dependency between the variables. In the case of PHQ-9 score and
passive data, the interesting ones are the negative or positive correlations, as they
indicate a change in the PHQ-9 score of the subject due to change in the passive
data. A change in passive data imply a change in behaviour.

Correlation can be calculated using different methods, resulting in different corre-
lation coefficients. The Pearson correlation coefficient was used for calculating the
correlation between the PHQ-9 score and the sensor data. The Pearson correlation
coefficient measures the linear correlation between two variables. Similarly, it takes
a value between -1 and 1. A correlation coefficient close to -1 indicates a positive
linear correlation, a correlation coefficient close to 1 indicates a negative correlation
and a correlation coefficient close to 0 means that there is no linear correlation.

r = N
∑

XY − (∑
X

∑
Y )√

[N ∑
x2 − (∑

x)2][N ∑
y2 − (∑

y)2]
(1)

The search for dependencies was done using the pilot study data. As mentioned
in Section 2.2.1, the PHQ-9 asks questions about the past two weeks. Therefore,
passive data from only the past two weeks is used to calculate the correlations. As
previously discussed in Section 3.1.4, the first PHQ-9 questionnaire is answered in
the beginning of the active phase, meaning that there is no passive data to connect
with the first PHQ-9. This restricts the amount of subjects. There are four patients
and eighteen controls that have answered enough PHQ-9 questionnaires. For these
subjects the quality of the passive data also varies. If the subject has gotten the
same score, for a question or the summed score, for all taken questionnaires, the
correlation can not be calculated for the separate question or the summed score.

Since each sensor outputs different features of data, the correlations were calculated
and analysed separately for each sensor.

The amount of timestamps in two weeks of temporal data varies from sensor to
sensor and person to person. This big quantity of data is at a low conceptual level,
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by generalizing the data it can be presented at a higher conceptual level and thereby
be easier understood.

As the usage of a smartphone varies from person to person, it is not straight
forward to compare changes in behaviour. An example of this could be that person
A uses the smartphone for 3 hours per day on a normal basis, whilst person B only
uses the smartphone 1 hour per day. Something changes in person B’s behaviour
and the smartphone usage increases to 3 hours per day. This is an increase of 300%,
for person B, but normal for person A. As an attempt to better compare changes in
behaviour to the changes in PHQ-9, a normalization of the data on subject level was
computed.

First, the two weeks of data was aggregated for each day, calculating the average
for each output of the sensor. This was normalized looking at all available 14 day
intervals for that subject. After the daily aggregation, the mean, standard deviation,
minimum and maximum is calculated for the mean of days, resulting in a summary
of the two weeks. Calculating the mean of each day and then calculating the mean,
median, standard deviation, max and min of the mean days, is a simple and in this
case sufficient way of comparing each day to another. This method allows us to
approximate without the problem of one day having more timestamps than the other.
It is a sufficient approach as it is used for searching for possible features to be used
in the classification.

Next, the summary is joined with the corresponding PHQ-9 score. This procedure
is done for each PHQ-9 total score. Finally, correlations between the different variables
can be calculated.

The correlation coefficients were calculated for all subjects as a group, for separate
groups as patients and controls, and for each individual subject. The results are
presented in Section 4.1.

3.4 Machine learning methods
Section about Machine Learning and the methods used in this thesis. The results
are presented in Chapter 4.

This thesis aims to learn from data and make classifications based on this
knowledge. Machine Learning follows a principle of learning from the data given to
predict an outcome [12][33][52]. Machine learning algorithms are an effective way
of modelling the complex structures of large data sets. The desired result, when
using machine learning, is to learn the links between the data and the labels, and
to create a model that is able to predict or classify based on the data given to
the model [12][33][52]. This mapping of patterns in data to an output is known
as pattern recognition, for which regression and classification are examples of in
machine learning [12][33][52].

In machine learning literature, observations are often called instances or data
points and the variables describing these data points are called features [33]. These
features are grouped into feature vectors, consisting of the features that best describe
the data points. The chosen machine learning method depends on the dataset, for
example, is the dataset small or big, labeled or unlabeled.
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Machine Learning problems are often divided into four areas; classification,
regression, clustering and dimensionality reduction [12][33][52]. In classification
the task is to determine to which category an instance belongs to, for example, is
the animal a dog or a cat [12][33][52]. The predicted categories are called classes.
Regression is used for predicting and forecasting values of a quantitative type, for
example, the hours spent working on different tasks of a course may have a relationship
with the course grade. In clustering, the problem is to divide the datapoints into a
chosen number of groups where the groups consist of similar datapoints [12][33][52].
The group of similar datapoints is called a cluster. In dimensionality reducation,
the task is to reduce the number of variables in an observation to the variables
that explain the observations the best, finding the best feature vectors [12][33][52].
Dimensionality reduction consists of feature selection and feature extraction.

There are three basic machine learning paradigms; supervised learning, unsu-
pervised learning and reinforcement learning [12][33][52]. In supervised training the
input data and output data is labeled. This means that we can try to create a
mapping function between input and output data, that could also be generalized
for unlabeled input. Classification and regression are typical problems solved with
supervised learning. In unsupervised training the data is unlabeled and the data
is instead explored for patterns to learn from. Examples of unsupervised machine
learning methods are clustering analysis and principal component analysis. These
methods extract useful features from the unlabeled data and build a model that
describes the data structure. An example of clustering analysis is K-means clustering
which was used in this thesis, see Section 3.4.1. Reinforcement learning does not
need labeled input and output. It uses the knowledge it has to update the model
and searches for more knowledge by further exploration. No reinforcement methods
are used in this thesis.

One of the often occurring problems in machine learning is overfitting. Overfitting
means that a trained model performs well on the original training data, but the
performance drops when the model is presented new data [12][33][52]. The model
does not generalize. An overfit model has learned specific data irregularities from
the training data and basing predictions on specific oddities does not perform well.
This can be prevented by having only a few features and by regularizing the data.
The opposite problem to overfitting is underfitting. In underfitting the model is too
simple and has a low variance [12][33][52]. Underfitted models tend to predict the
wrong outcome, by having a bias towards some predictions. Identifying overfitting
can be done by splitting the data into a training set and a test set. The model
is built with the training set and the test set is used to test the real accuracy of
the model. Cross-validation can be used for tuning the model, without peeking at
the test set. In cross-validation the training set is further split into training and
test sets, where iteratively one split is used as test set and the rest is the training
data. Another way of reducing overfitting is more data. More data often prevents
overfitting due to that the training and test set becomes bigger, making it more likely
to find a better fit. Removing features also helps preventing overfitting [41]. The
rule of thumb for features versus samples is 1 to 10. When reducing the features, it
is important to remove redundant and irrelevant features. Redundant features are,
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for example, features that overlap with each-other. For further feature reduction,
the earlier mentioned dimensionality reduction methods can be used, either feature
selection or feature extraction.

Deep learning is a type of neural network consisting of multiple layers between
the input and output layer [54]. These layers calculate the probabilities of outputs
when given an input. The more layers a deep neural network (DNN) has, the deeper
it is. DNNs have become popular machine learning methods as they can model
complex non-linear relationships, however, it is not suitable for all kinds of modelling.
Deep learning often demands a big evenly distributed dataset, so that it does not
overfit. Deep learning also demands higher computational power, for each added
layer. Disadvantages with deep learning are that the resulting model is complex and
not easily interpreted, and information security breaches can also be introduced, for
example, via a model that leaks information about the training dataset [58].

Choosing a machine learning method is not simple. The selected model has to be
supported by the problem and, the quantity and quality of the data. Further, the
purpose of the model has to be well defined, as well as, the criteria to measure its
performance. Depending on the purpose of the model, a prediction error may be
crucial. An example of a devastating prediction would be not finding a cancer tumor
when a person has cancer.

In [31] it is stated that linear regression is not appropriate in the case of a
qualitative response. If the response variable’s values did take on a natural ordering,
such as mild, moderate, and severe, and if the gap between mild and moderate was
similar to the gap between moderate and severe, then a 1, 2, 3 coding would be
reasonable. Unfortunately, in general there is no natural way to convert a qualitative
response variable with more than two levels into a quantitative response that is
ready for linear regression. [31]. The PHQ-9 score could be seen as a scale between
mild-major depression. However the scale is only indicative and it can be problematic
to transform it to a quantitative response.

In this thesis the main problem is to classify subjects into patients and controls.
The data points used in the learning are smartphone data and PHQ-9 answers. The
data is labeled, it is known if the subject is a patient or a control. The biggest
restriction in the data is that the sample size is small versus the number of features
available.

3.4.1 k-means clustering

To analyse the subjects and their associated data the k-means clustering method was
used. k-means clustering finds clusters in unlabeled data [26]. In data labels, patient
and control, are removed and an exploration of the data is done by trying to separate
the unlabeled data into groups. These groups are called clusters. The clusters are
made up by close-by data points, meaning the data points with the least distance to
the cluster center are part of the same cluster. The distance to the cluster center can
be calculated using different definitions, but a popular definition is the Euclidean
distance.
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k-means is a hard clustering method, where the amount of clusters is k and a
cluster center is represented by the cluster mean [26]. The number of clusters can be
two or up to the amount of data points. A data point is appointed to the cluster
with the shortest distance from the cluster center to the data point. After each
appointed data point, the cluster center is updated. When all data points are sorted
to a cluster, the algorithm has finished. It should be noted that, the end result is
not always the same. The end result depends on the sorting order of the data points,
meaning that some data points may be sorted to another cluster depending on what
the cluster center is at the time of the sorting. The end result of the clustering can
be evaluated using a criterion called inertia. Inertia is the sum of squared distances
of data points to their closest cluster mean. By minimizing the inertia the clustering
error can lowered.

An optimal result would classify each data point to the correct cluster/group,
but for smartphone data there will probably be some overlap and miss-classification.
The method will still show how close the two groups data is to each other and more
importantly if some features overlap so much that they should be excluded.

The scikit-learn clustering package function KMeans [49], was used for the k-
means clustering. The function clusters data by separating the samples into groups
of equal variance, minimizing a criterion known as the inertia or within-cluster
sum-of-squares. The function uses either Lloyd’s or Elkan’s algorithm.

k-means clustering was used to see how well the different sensors clustered the
subjects according to the labels, patients and controls, and to see which subjects
resemble each other, which is seen by them clustering together. Similar smartphone
behaviour for subjects group them together. The results are presented in Section 4.2.

3.4.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) finds a linear combination of features which can
be used to separate two or more classes from each other. The found linear combination
can be used for classification, either as a linear classifier or for dimensionality reduction
before classification [39]. In this thesis the latter is used in combination with decision
tree classification, which is introduced in Section 3.4.3.

LDA is a supervised feature reduction technique which reduces the dimensionality
of the feature space [57]. Principal component analysis (PCA) is a similar technique,
however, it is unsupervised and does not perform as well as LDA in classification
tasks [57]. LDA is a suitable method if there are two or more classes. LDA can be
used to overcome small sample size problems [57][31] and is therefore feasible for the
pilot study data set.

LDA finds a matrix W that transforms the feature vectors to a lower dimensional
feature space in a way that maximizes the separation between the classes [31]. The
highest possible dimensionality is the number of classes reduced by one. In the case
of two classes, patients and controls, the dimensionality is reduced to one [31]. This
is seen as a strong reduction. It should also be pointed out that if the classes are
well-separated, then logistic regression models become unstable, whereas, LDA does
not run into the same problem [31].
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In [26] it is said that, for LDA the parameters of the distribution are not known,
so they are estimated using the training data. They further say that, LDA tries to
fit decision boundaries on the data by minimizing the training error. As this method
is linear, visualized the boundaries would be just straight lines dividing the data
optimally. However quadratic decision boundaries can be found using LDA in a
higher -dimensional space. Nearly similar results can be obtained using Quadratic
discriminant functions (QDA).

In implementing LDA in this thesis, the LDA components are used as features in
a decision tree. The LinearDiscrminantAnalysis classifier in the scikit-learn package
was used [49]. The class conditional densities are fitted to the data and the Bayes’
rules are used to create the classifier. The classifier fits for each class a Gaussian
density. The classifier can be used to classify or for dimensionality reduction before
classification. As stated before, the model is used for dimensionality reduction and
then transformed data is used to train the decision tree, which does the predictions,
see Section 3.4.3.

As LDA is suitable for more than two classes, it can be used for future research
topics for classifying between different cohorts.

3.4.3 Decision Tree Classification

Decision tree learning is a predictive model in the form of a decision tree [50][12][33][52].
The tree’s branches leads from where an internal nodes divides based on an observa-
tion to the next node and the leaves are the terminal nodes showing the resulting
prediction, when following the different branches of observations [50][12][33][52]. It
should be pointed that the tree is often visualised upside-down, with the root starting
in the top of the image and the leaves ending on the bottom of the image, see example
figure 2. A tree that predicts a value in a discrete set of values, for example a class,
is called a classification tree. In this thesis the leaves are either patient or control
and the observations are the smartphone data features.

The biggest advantages with decision trees are that they are easy to interpret, dis-
play graphically and the decisions taken by the tree are easy to explain [50][12][33][52].
On the other hand a tree model is not robust and the model will change as the
training data changes, meaning the branches and the decisions will look different.

A decision trees branches are built by splitting the predictor space. These splits
produce regions where certain observations are true. This means that before the
first split all observations are part of the same region. For each split of the predictor
space two branches occur, meaning one region is split into two regions.

More splits ends in better accuracy for the training set, which often means
overfitting and bad accuracy for the test set. This can be prevented by having a
smaller tree with fewer branches.

For a classification tree, a split is based on the most common class in a region
[50][12][33][52]. An internal node can hold different classes, but at the terminal node
only one class. The classification error rate can be used as a split criterion, but it
is often not sensitive enough. Two commonly used criteria are the Gini Index and
entropy. The Gini Index is the default for scikitlearn’s DecisionTreeClassifier and
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is used in the implementation of the machine learning model. The Gini index is a
measure of total variance across the K classes. The Gini Index is also to describe or
denote a node as pure or impure. A pure node contains only observations from a
single class, whereas a impure node contains observations from more than one class.

As mentioned before in Section 3.4.2, the decision tree implemented is trained
with the transformed data from the LDA dimensionality reduction. The results of
the LDA and decision tree classification results are presented in Section 5.3.

Figure 2: An example of a decision tree. The number of branches and leaves should
be adapted according to the dataset and feature size.

3.4.4 Validation of the classifier

As a way to calculate the accuracy for the classification models an implementation
using cross-validation was used. In cross-validation the partition of samples into the
training and test set is done several times, resulting in different subsets each round
[11][60][61]. This will give an average of the prediction accuracy for the different
models [56].

The cross-validation was implemented by randomly picking controls and patients
to the training and test sets. As each subjects data was split into smaller lengths
depending to determine the best sequence lengths, it is important to not mix a
subjects data between the different sets. When looking at the the different models
accuracies separately one can see which models may have problems with overfitting
or selection bias [21].

For the data used in this study there were eight patients and eighteen controls.
When applying cross-validation on this dataset, it would result in subgroups with,
for example, a training set containing 6 patients and 13 controls and a test set of
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2 patients and 5 controls. If run with all different combinations, this would result
in 28 different combinations of patient subgroups and 8568 control groups. One
could further try to balance the training set by choosing equal amount of controls as
patients. This would change the choosing of controls and result in 18564 different
combinations of control groups. In this thesis the cross-validation was done by
varying the patient and control size in the training and test set. With the patient
set size ranging from two to five and control set size ranging from four to ten.

3.4.5 kh-segmentation

In time-series analysis a practical way of representing the data is to make it compressed
and concise, and present it efficiently and understandably [63].

One interesting way of analysing sequence data is using kh-segmentation. The
kh-segmentation is a modification to the original segmentation problem, where the
optimal segmentation with k-segments can be found with a dynamic program [24][16].
The problem is to segment an n-element sequence into k-segments, where each
segment is homogeneous with regards to an error measure. An example of a sequence
is the heart rate during the the day. A persons heart rate usually has a resting state
and changes in the heart rate due to, for example, physical exercise, sleep or stress.
In this case the segments would consist of the these different heart rate zones. For
example, the the sequence begins with sleep and changes to an awake resting state,
here sleep and awake are different segments.

In kh-segmentation a sequence is divided into segments and these segments are
further distributed into states, that are related to each other and coming from a
number of sources. The problem of finding the best ways to segment an n-element
sequence into k-segments, and further deciding the different h-sources they stem
from, has been presented in [24]. Continuing with the heart rate example, the h-
sources could represent the different heart rate zones, where the k-segments that are
the same are marked as the same, for example, the resting states are marked as the
same h and sleep is marked as sleep. If h is set equal to k, then it is the same as the
k-segmentation. The amount of sources is the same as the amount of segments.

By choosing different k and h the level of granularity changes. A coarse low-level
granularity does not see the small features and tries to look at a bigger picture,
whereas the fine high-level granularity describes the small features and details. For
the heart rate example, coarse granularity would be the difference between being
awake and asleep, whilst fine granularity would even notice the different kinds of
exercise heart rate training zones recovery, aerobic, anaerobic.

The problem gets even more dimensions when extending it to a multivariate
setting, meaning adding more variables than just one sequences of n-elements. This
gives us the possibility to look at several features when segmenting, not only one.
For the heart rate example, it could mean adding an actigraph that measures the
movement of the person.

When choosing k and h, the number of sources does not have to be the correct
amount of states, more sources does not lower the accuracy and less sources does
not lower it that much [24]. This is good if one does not want to have a set amount
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of sources, for example, the states asleep and awake. Using a more exploring way of
setting the amount of sources makes it possible to discover hidden states that one
had not thought about. How to find the most optimal k and h is explored using two
different criteria explained later in this section.

The problem of finding a good way of segmenting an n-element sequence into k-
segments, with h different sources has thankfully different solutions, [24][37][19][63][28].
In this thesis the solution and code presented in the paper [24] was used and modified.
The paper, presents three approximation algorithms; Segments2Levels, Clus-
terSegments and Iterative. In this thesis the ClusterSegments algorithm
was modified for use.

Algorithm ClusterSegments: The algorithm solves the k-segmentation prob-
lem ending in a segmentation S. Each segment is a mean of the elements. Finally,the
k segments are clustered into h clusters.

The paper provides a score for the chosen k and h values by applying the Baysian
information criterion (BIC)[55][37]. A lower BIC value means a better segmentation.

In the case of mental health and passive smartphone data, the relationship
between the segmentation of the passive data and the changes in the PHQ-9 score is
interesting. The hypothesis is that if there are changes in the PHQ-9 score there
should be changes in the behaviour, which further should show as segmentation in
the passive data.

As mentioned, the PHQ-9 asks the subject questions about the last 14 days.
The data for each feature for the last 14 days is thereby acquired, normalized and
aggregated for each day. This is done for each PHQ-9 that a subject has submitted.
These sequences are combined one after another.

First, the segmentation behaviour was explored through using different k and h.
Secondly, the optimal values for k and h were searched for by maximizing the

correlation between the 14 days of data and the PHQ-9 score.
Thirdly, the optimal values for k or h were searched for by maximizing the

correlation between the 14 days of data and the PHQ-9 score.
Lastly, the optimal value for k and h were searched for by minimizing the BIC

value.
The results using the different criteria were verified by calculating the correlation

between the different segmentations and the PHQ-9 score. The different correlations
were compared with correlation between the average for a sequence, where k is set
so the length of the sequence, and the PHQ-9 score. If the correlation is higher it is
seen as better than average.

The results for each experiment can found in Section 4.4.
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4 Results
This chapter presents and evaluates the results. The last section, Section 5, is
dedicated to discussing the results and drawing conclusions.

4.1 Correlation results
The correlations between the sensor features and PHQ-9 scores were calculated
separately for each sensor as shown in Section 3.3.

The PHQ-9 score reminisces the past two weeks, therefor the past two weeks of
data from answering the PHQ-9 questionnaire is interesting. The data was normal-
ized for each subject so that they could be compared to each other. First, the two
weeks of data was aggregated for each day. Second, the mean, standard deviation,
minimum and maximum was calculated for the two weeks, resulting in a summary of
the two weeks. Next, the summary was joined with the PHQ-9 score. This procedure
was done for each PHQ-9 score available for a subject. Finally, correlations between
the different variables was calculated.

First, the correlation was calculated looking at all subjects and the total PHQ-9
score. Looking at the correlations shown in figures 3, 4 and 5 only slight correlation
could be seen. Since the patients and controls are expected to behave differently,
reasonably the correlations can also be different for the patient and control groups.
It also to be noted that there are more controls than patients, making the controls
affect the correlation results for all subjects more. Thus, the correlations were also
calculated separately for each group.

Second, the correlation between patient sensor data and PHQ-9 score was calcu-
lated. The results show correlation between changes in the sensor data and changes
in the PHQ-9 score. This is seen in figures 6, 7 and 8. For example, for noise data
the correlation between the mean of noise and the PHQ-9 has a negative correlation,
indicating that high mean noise correlates with a lower PHQ-9 score. This could
further indicate that being surrounded by noise is a sign of improved mood. For
example, leaving a quite apartment or being surrounded by people.

Looking at the screen data correlation results in figure 7 there is a positive
correlation between the duration of having the phone screen off and the PHQ-9 score.
Meaning that having the phone screen off for a shorter duration correlates with a
lower PHQ-9 score. Meanwhile a high use count has a negative correlation with the
PHQ-9 score. This would indicate that having a high use count correlates with a
lower PHQ-9 score. Activating the phone screen and keeping it on would hence indi-
cate an improved mood among patients. This is similar to the results in this study [20]

According to the same study, [20], it was expected that there would be correlation
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Figure 3: Correlation between PHQ-9 score and noise data for all subjects.

Figure 4: Correlation between PHQ-9 score and screen data for all subjects.

seen between the location data and the PHQ-9 score. There was however nothing
marked seen in figure 8.

Last the correlation was calculated between control sensory data and PHQ-9
score. Compared to the patients, the control groups PHQ-9 score does not correlate
that much with the different sensor data. This is seen in figures 9, 10 and 11. This
can however be seen as expected, the control groups mood is not expected to vary
much and it is not expected to change based on behavioural changes in the data
gathered from the smartphone.
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Figure 5: Correlation between PHQ-9 score and location data for all subjects.

Figure 6: Correlation between PHQ-9 score and noise data for patients.

Considering that a difference could be seen in the correlations between the groups,
it is further interesting to look at the individual correlations. When looking at the
individual correlations, it is interesting to see that all subjects show a heterogeneous
pattern while comparing them to each other. It seems like the subjects belonging to
the control group, are more heterogeneous compared to the subjects belonging to
the patient group.

Figures 13, 14, 15 and 16, show dark areas which indicate when there is no
change either in the PHQ-9 score or in the sensor data. When there is no change the
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Figure 7: Correlation between PHQ-9 score and screen data for patients. The x
indicates the duration and the data without x is count.

Figure 8: Correlation between PHQ-9 score and location data for patients.

correlation can not be calculated. It is good to remember that this also affects the
correlations when calculating for groups or all subjects.

Due to the small sample size, it was not valid to calculate the correlation for the
separate PHQ-9 questions. This could however be interesting to do when a bigger
dataset is available.
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Figure 9: Correlation between PHQ-9 score and noise data for controls.

Figure 10: Correlation between PHQ-9 score and screen data for controls.

4.2 k-means clustering results
The results and conclusions of the the k-means clustering. The k-means clustering
was calculated as shown in Section 3.4.1. The samples were clustered into 2 groups
to see if the clustering would be similar to the actual labels.

For the noise data it seems like there are zero subjects in group 1, see figure 18.
However, when looking at the pair plots in appendix A three subjects are seen in the
other group.

It is seen in figure 20 that the screen data is more grouped. When comparing the
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Figure 11: Correlation between PHQ-9 score and location data for controls.

Figure 12: Correlation between PHQ-9 score and noise data for control with 15
answered questionnaires.

k-means clustering to the actual labels in figure 21 it is however seen that there is
false classifications.

The kmeans results for location has sorted the subjects into two clear groups, see
22. However looking at the original labels in figure 23 the control is more spread and
the patients are found clustered together in a small area.

When comparing the kmeans groups and the original labeling of the communi-
cation data, see figures 24 and 25, they seem quite similar. It is interesting to see
that the cluster centers are very close to each other. This means that the clusters
are close to each other and indicate that the groups are similar.

The social application data is grouped quite well. It does however not cluster
the control group outliers into the same group. As a test the amount of groups was



36

Figure 13: Correlation between PHQ-9 score and noise data for patient with 4
answered questionnaires.

Figure 14: Correlation between PHQ-9 score and screen data for control with 14
answered questionnaires.

increased to three, see figure 28. The third group consists of the control outliers.
Increasing the amount of groups seems to find the controls and place them in a
separate group. However increasing the amount of groups does not add value, as the
comparison is only possible due to that the labels are known. One could argue that
the patient group has similar behavioural patterns whereas the control group can be
divided into smaller groups with different behavioural patterns.
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Figure 15: Correlation between PHQ-9 score and screen data for control with 6
answered questionnaires.

Figure 16: Correlation between PHQ-9 score and location data for control with 7
answered questionnaires.

4.3 Linear Discriminant Analysis and Decision Tree Classi-
fication results

Results and conclusions for Linear Discriminant Analysis (LDA) and decision tree
classification. The LDA and decision tree classification models were created as
described in Sections 3.4.2 and 3.4.3. The validation of the models is described in
Section 3.4.4.

Different models were trained for each sensor and one model was trained for all
data combined. All models were trained by changing the interval of days, and by
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Figure 17: Correlation between PHQ-9 score and location data for patient with 5
answered questionnaires.

Figure 18: k-means clustering of noise data. Three subjects have been clustered close
to the lower cluster center.

rotating the subjects used in the training and testing. The data was split into pieces
of 7,14,21,28,30 and 35 days. When looking into the differences in the models, most
models were quite consistent, with a good cross-validation accuracy.

Bellow, first the LDA results before the decision tree and then the classification
results will be presented for each model.

As the classification is between two classes the scaling matrix produced by the
LDA will be one-dimensional. LDA tries to separate the two groups from each other
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Figure 19: Visualisation of the real labels on k-means clustering of noise data.

Figure 20: k-means clustering of screen data.

as well as possible. To see this separation, the fitted and transformed data is plotted
to see how well the groups can be distinguished from each other. As a reference the
battery data has undergone the same process. The expectation is that the battery
data should not be different between the groups. In figure 29 no separation between
the groups is seen. However there is one outlier which is interesting.

As mentioned in Section 3.4.2, PCA is a similar technique to LDA, but is not
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Figure 21: Visualisation of the real labels on k-means clustering of screen data.

Figure 22: k-means clustering of location data.

expected to work well in classification tasks. PCA is performed so that it can be
compared with LDA. For this battery is again a reference. It is seen in figure 30
that PCA is not able to separate the data points into groups. The same outlier is
seen again.

The noise plugin measures ambient noise captured from the phones surroundings.
This gives an idea of how much noise the subject is exposed to during the day.
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Figure 23: Visualisation of the real labels on k-means clustering of location data.

Figure 24: k-means clustering of communication data.

Performing LDA on the noise data gives the results presented in figure 31. It is seen
that the separation between the groups is quite good. However there seems to be
some overlap. Looking at the PCA of the noise data no distinct groups can be made
out of the data points in the plot.

When looking at the LDA component weights for noise it seems that decibel
mean, decibel median, decibel std, noise mean, noise median and noise std are the
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Figure 25: Visualisation of the real labels on k-means clustering of communication
data.

Figure 26: k-means clustering of social data.

most important features. Minimum and maximum does not provide added value, so
they can be dropped.

For noise a classification was performed using the LDA model. The results are
seen in figure 33. It is seen that cross-validation accuracy is lower for fewer day splits
at a mean under 0.871 and at its highest with more days in each split with an mean
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Figure 27: Visualisation of the real labels on k-means clustering of social data.

Figure 28: k-means clustering of social data into three groups.

accuracy over 0.876.
The LDA results are used to train the decision tree classifier. As an example, the

representation of the tree created for noise data can be seen in figure 34. It is seen in
figure 33, that using the decision tree classifier gave higher accuracy results compared
to the only LDA model in figure 33. The cross-validation accuracy is ranging from
approximately 0.965 to 0.969, with lower accuracy for fewer day splits and higher
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Figure 29: Visualisation of how well LDA was able to separate battery data. The
LDA calculated for battery data should be seen as a reference, as it should not be
well separated.

Figure 30: PCA calculated on battery data. The PCA calculated for battery data
should be seen as a reference, as it should not be well separated.

accuracy for high amount of day splits.

Performing LDA reduction on screen data gave the separation shown in figure 36.
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Figure 31: Visualisation of how well LDA was able to separate noise data.

Figure 32: PCA calculated on noise data.

There is only one control who overlaps to the patient side, otherwise the groups are
well separated. Comparing it to the PCA in figure 37, it is seen that no distinguish-
able groups are found in PCA. The decision tree classifier gives the results shown
in figure 38. The accuracy is high, with a range from a bit over 0.962 and under
0.950. It is interesting to see that the accuracy drops for splits that contain more days.
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Figure 33: LDA classifier accuracy for noise data

Figure 34: Decision tree for noise

The LDA performed on location data separates the two groups well, see figure
39, but has one patient that is on the control side right next to the control that is
furthest away from the rest of the controls. The PCA method creates three different
groupings, where the first group consists of one patient, the second group is mixed
with both controls and patients and the last group contains only controls. The
classification results are shown in figure 41. The location results also hold a high
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Figure 35: LDA and Decision Tree classifier mean accuracy for cross-validation for
the different ranges for Noise

Figure 36: Visualisation of how well LDA was able to separate screen data.

accuracy varying between under 0.9728 and under 0.9742. The location model has,
similarly as noise, a lower accuracy at fewer day splits and acquires a higher accuracy
when more days are added to the splits.

The communication LDA separation is the most clear of all the data separations,
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Figure 37: PCA calculated on screen data.

Figure 38: LDA and Decision Tree classifier mean accuracy for cross-validation for
the different ranges for screen data.

see figure 42. The accuracy of the classification results was 1 for each split, and is
therefore not plotted as a figure.

The application dataset is also well separated by LDA, see figure 43. The gap
between the groups was however not the largest. The PCA was not able to distinguish
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Figure 39: Visualisation of how well LDA was able to separate location data.

Figure 40: PCA calculated on location data.

any groups. The accuracy of the classification results was 1 for each split, and is
therefore not plotted as a figure.

The last model consisted of all features in one model. First a model with monthly
splits was created. The LDA separation is seen in figure 45. The accuracy of the
model was 1 for all splits. The tree was plotted to see the structure. see figure 46.
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Figure 41: LDA and Decision Tree classifier mean accuracy for cross-validation for
the different ranges for location data.

Figure 42: Visualisation of how well LDA was able to separate communication data.

Looking at the tree it seems like the model using months is underfitted, this is due
to that a smaller depth of the tree increases the chances of bias. One way to prevent
underfitting is to increase the number of samples, so next the splits were made smaller.

An method used to prevent underfitting was splitting the subject data into pieces
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Figure 43: Visualisation of how well LDA was able to separate application data.

Figure 44: PCA calculated on application data.

based on the number of days. Deciding on the allowed number of, for example, 14-day
intervals for each subject in the training set should balance the data. The same
splitting was done for the test data, but each model was tested with all splits for
each test subject. The smaller splits were 7, 14, 21, 28, 30 and 35. The resulting
LDA is seen in figure 47 and contains all different split sizes. It is seen that there is
plenty of overlap in the middle. The classification accuracy is seen in figure 49. The
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Figure 45: Visualisation of how well LDA was able to separate all data, when using
more than 7 day intervals.

Figure 46: Decision tree for all data and using intervals of more than 7 days.

mean accuracy clearly drops for bigger split sizes than for the smaller. The tree in
figure 48 contains more branches, which should indicate less underfitting.

Figure 49 is a mean of results for different training and test sizes, and different
time intervals. When looking at the them separately the worst accuracy was found
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Figure 47: Visualisation of how well LDA was able to separate all data when using 7
day intervals.

Figure 48: Decision tree for all data when using 7 day intervals.

in figure 50. It drops to an accuracy close to 0.2 at 27 days.

When comparing the results from the separate features and all features, it is seen
that the separate features are giving more accurate predictions. This is probably
due to that when a subject is missing data from one of the sensors, this has been
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Figure 49: The mean accuracy for cross-validation of classification for different
training and test set sizes, and different time intervals, when using all data.

Figure 50: The model with worst accuracy.

imputed instead of not being discarded. Also models trained with machine learning
tend to become worse with too many features compared to the amount of samples.
With this in mind a better solution would be to classify subjects with separately
trained models for each sensor and then summing the results of the different models
to get the final classification result.

As the sample size is small it is possible the models are skewed or overfitted.
The ratio between the subjects is also twenty-three controls versus fourteen patients,
which also affects the results. An interesting point is that the control group consists
of data collected by students. It would be interesting to see how the models would
be affected by a more diverse control group.
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Manual pruning could be useful in the future when there are more samples and
more variance.

4.4 kh-segmentation results

Figure 51: Example of kh-segmentation with k=4 and h=4 on low quality location
data.

The hypothesis is that if there is a change in the PHQ-9 score, then there is a
behavioural change in the smartphone usage.

First, the kh-segmentation code was tested with location data, this is due to
that other studies have found preliminary support for the reliability and validity of
location data as an objective measure of behaviour changes [23][51]. The code is first
tested looking at separate sensor features and setting k and h to be the same value.
Meaning the number of segments and sources are the same. The test values were 5
and 15 for both k and h, these were chosen arbitrarily but small enough to analyse
intuitively. As stated in the Method section 3.4.5, the data was aggregated into days
and looking at the 14 days before the taken PHQ-9 questionnaire. By plotting the
aggregated data together with the segmentation, it is seen that the results produced
by the kh-segmentation method are intuitively appealing. Results are shown in
figures 51 and 52. The algorithm seems to work well with the location data, even
though the location data seems to be very irregular and have some missing data.
This could indicate that data is lost somewhere during the data processing pipeline,
as there are timestamps for these data points. Nevertheless, the algorithm still seems
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Figure 52: Example of kh-segmentation with k=14 and h=14 on high quality location
data.

to find the most optimal segments for the given k and h. Clear segments can be seen
and they seem to match changes in the data pattern.

Next, the segmentation was done including more than one feature, meaning
comparing more than one data-sequence for getting the most optimal segmentation.
The chosen numbers for k and h were set based on the amount of available PHQ-9
scores. k is set to two times the amount of PHQ9 and h is set to amount of unique
PHQ9 scores. The results are shown in figures 53, 54 and 55.

The location data again shows problems in figure 54 due to missing data. However
the segmentation can again be seen as correct. Figures 53 and 55 do not have missing
data to the same extent and produces better segments. Looking at figures 53 and 55,
it is also seen that peaks tend to get their own segment. This due to a considerable
change in the data sequence.

It can now be seen that, even though the segmentation of the location data is
correct, the segmentation does not add value as the location data used in this thesis
is missing too much information. Thus the segmentation method is not to be used
on sensor data with too few data points or with too much missing data. Too few
data points in this case means that a describing aggregation of a day cannot be
made from the data. If it is possible to improve the quality of the location data,
segmentation could be used.

It seems as if the areas of missing data are marked with a segment of its own.
This is seen especially for the subjects that have more data points to look at than
other subjects, but still have missing data points. This can be seen in figure 54,
where the first segment contains peaks in the data, but are not enough to create a
new segment.
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Figure 53: Example of kh-segmentation with k=21 and h=4 on location data. k is
set based on the amount of PHQ9 times three and h is set based on the amount of
unique PHQ-9 scores.

Next, the screen data was tested as it has more data points and less missing
data than location data. k and h were again set based on the amount of available
PHQ-9 scores. k is set to two times the amount of PHQ9 and h is set to amount
of unique PHQ9 scores. The algorithm seems to work well with the screen data, as
clear segments can be seen and they seem to match changes in the data pattern.
This can be seen in figure 56.

More data points seems to result in a better segmentation, which agrees with that
the ClusteringSegments method obtains a better accuracy when provided a longer
sequence [24]. The correct segments and sources are easier to find with more data
points. Due to this only screen data will be used for segmentation. As screen data is
of better quality with regards to data points and missing data, and the aim is to
find the most suitable k and h for each subjects data, using different criteria. The
different criteria to be tested were presented in the method section 3.4.5.

The first criteria was based on having the PHQ-9 score as ground truth and
measuring how well it correlates with the segments. As each subject has a different
amount of PHQ-9 scores, the max range for k was set to 30 times the number of
PHQ-9 scores. This was an arbitrary number that was manually tweaked to work
based on that the optimal k was most probably found before the max k. Most
probably means that the optimal k had not changed in several cycles before reaching
the max k. Another option could be choosing the max range for k by the changes
in the PHQ-9. However, in a few cases the max allowed k was the most optimal,
according to the criteria. It should be taken to consideration that the longer the
range is for searching the most optimal k, the longer it takes to run the code. One
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Figure 54: Example of kh-segmentation with k=14 and h=6 on location data. k is
set based on the amount of PHQ9 times two and h is set based on the amount of
unique PHQ-9 scores.

possible case is that some data sequence achieves a better correlation with PHQ-9
the higher the k is, meaning that k equal to the number of data points gives the
most optimal result. So a restriction for max k is in order.

When applying the PHQ-9 error measure, it was first optimised based on k.
This resulted in a more granular result, with more segments, see figure 58. The
correlation between the segments and the PHQ-9 score is shown in figure 59. The
max correlation score is 15 and by only optimizing k the score was 6.6.

Secondly, it was optimised on either k or h, choosing the k or h that gave the
highest correlation value. This resulted in less segments k and also a variation of h
for most subjects. See figure 62.

For k or h, the h is often lower than when maxing both k and h. This seems to
be the case for controls. But for patients the k and especially h changes for maxing
both k and h. This could be explained by the changing PHQ-9 score. This is another
reason for why it is hard to say if the PHQ-9 criteria is good or not.

Lastly, it was optimised using the k and h that together gave the highest correlation.
See figures 63, 64, 65 and 66. This resulted in a high k and a high h.

One major problem with having the PHQ-9 score as ground truth and as an error
measure for the kh-segmentation is that some subjects do not have a change in the
PHQ-9. This is a problem due to that when there is no change in the PHQ-9 score
no correlation between the PHQ-9 score and the segmentation can be calculated.

The second criteria was based on the BIC error measure, which was implemented
in [24]. A lower BIC value means a better segmentation. See figures 57 and 60 for
results.
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Figure 55: Example of kh-segmentation with k=16 and h=2 on location data. k is
set based on the amount of PHQ9 times two and h is set based on the amount of
unique PHQ-9 scores.

Figure 56: kh-segmentation of screen data for patient, with k=70 and h=4, where k
is chosen 10 times number of PHQ-9 and h is the number of unique PHQ-9 scores.

An interesting property of the segmentation, when using the BIC error measure,
was that the BIC value was lowest when k and h was the same. For future research
the h could be chosen in a different way, for example, allowing an maximum BIC
error when reducing h.

When comparing the error measure of PHQ-9 and BIC, see figures 58 and 60, it
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Figure 57: kh-segmentation of screen data for control, with lowest BIC of 156.312
when k=10 and h=2.

is seen that the resulting segmentation is very different. It seems like the PHQ-9
error measure gives a more granular result, with more segments and the BIC measure
results in a less granular result, with fewer segments.

To validate the different criteria, the correlation was calculated between the
segmentation and PHQ-9 score. This was compared to the average segmentation
were k was set highest possible. First a comparison for a control is made and the
average segmentation is seen in figure 73. The segmentation for maximising k and
h is seen in figure 67 and the correlation is seen in figure 68. It is seen that the
correlation for the criteria segmentation is lower than for average.

The segmentation for maximising k or h is seen in figure 69 and the correlation
is seen in figure 70. It is seen that the k correlation for the criteria segmentation is
higher than for average.

The segmentation for BIC is seen in figure 71 and the correlation is seen in figure
72. It is seen that the correlation for the criteria segmentation is higher than for
average.

Second a comparison for a patient is made and the average segmentation is seen
in figure 80. The segmentation for maximising k and h is seen in figure 74 and
the correlation is seen in figure 75. It is seen that the correlation for the criteria
segmentation is lower than for average.

The segmentation for maximising k or h is seen in figure 76 and the correlation
is seen in figure 77. It is seen that the h correlation for the criteria segmentation is
higher than for average.

The segmentation for BIC is seen in figure 78 and the correlation is seen in figure
79. It is seen that the correlation for the criteria segmentation is lower than for
average.

When comparing the criteria by looking at the correlations between the segmen-
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Figure 58: kh-segmentation of patient
screen data using the correlation be-
tween PHQ-9 and the segmentation
as the error measure. Here the opti-
mal k = 100 and h = 100, where the
correlation error measure was 6.63.

Figure 59: The correlation between
the segmented fortnights and their
corresponding PHQ-9 scores, for kh-
segmentation of patient screen data.
Random identifier redacted for infor-
mation security.

Figure 60: kh-segmentation of patient
screen data using BIC as the error
measure. Here the optimal k = 10
and h = 10, where the best BIC was
392.166.

Figure 61: Different segmentation re-
sults for same patients screen data.

Figure 62: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for either k or h.

tations and PHQ-9 score, and the k and h that give the most optimal segmentation
there seems to be some connections. Firstly, when maximising both k and h it seems
like the it tends to set k to maximal allowed value. This means it will be very close
to average or average. This criteria will also tends to perform worse than average
when comparing the correlations, see figures 68 75.

Secondly, when maximising for k or h both k and h tend to stay low. Looking at
the correlation with PHQ-9 score, see figures 70 and 77, the correlation for either k
or h is higher than for the average correlation.

Lastly, when minimising BIC k and h are set to a low value. The correlation is
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Figure 63: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for both k and h.

Figure 64: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for both k and h.

mostly better than average, but there are cases where the correlation is lower than
average e.g. figure 79.

When writing the results section of this thesis, a bug was found in the location
data converter code. It seemed as if the longitude and latitude was calculated
incorrectly dropping a whole data channel, causing the distance measuring to be
incorrect. Hopefully a re-work and re-run of the code would be enough to improve



63

Figure 65: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for both k and h.

Figure 66: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for both k and h.

results. Unfortunately the data converter is outside the scope of this thesis.



64

Figure 67: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for both k and h.

Figure 68: Correlations for control, when maximising correlation with PHQ-9 for
both k and h, and the average correlation.
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Figure 69: kh-segmentation of screen data for control, when maximising correlation
with PHQ-9 for k or h.

Figure 70: Correlations for control, when maximising correlation with PHQ-9 for k
or h, and the average correlation.
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Figure 71: kh-segmentation of screen data for control, when minimizing BIC.

Figure 72: Correlations for control, when minimizing BIC and the average correlation.
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Figure 73: kh-segmentation of screen data for control for average.

Figure 74: kh-segmentation of screen data for patient, when maximising correlation
with PHQ-9 for both k and h.
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Figure 75: Correlations for patient, when maximising correlation with PHQ-9 for
both k and h, and the average correlation.

Figure 76: kh-segmentation of screen data for patient, when maximising correlation
with PHQ-9 for k or h.
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Figure 77: Correlations for patient, when maximising correlation with PHQ-9 for k
or h, and the average correlation.

Figure 78: kh-segmentation of screen data for patient, when minimizing BIC.
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Figure 79: Correlations for patient, when minimizing BIC and the average correlation.

Figure 80: kh-segmentation of screen data for patient for average.
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5 Conclusions and discussion
When looking at the results it is good to remember that they are not predicting
behavioural changes or the mood. All methods look at the behavioural patterns and
compare the changes in the behavioral patterns to the changes in the PHQ-9 score
or compare the different behavioural patterns between each other to classify if the
subject is a patient or a control.

5.1 Correlation
Patients showed correlations in the ranges of -1.0 to -0.5 and 0.5 to 1.0. Where as,
controls had correlations only in the range of -0.25 to 0.25. This could be due to that
the controls are more diverse as a group whereas patients behavioural changes are
similar. Another reason could be the fact that the control group’s PHQ-9 score does
not vary much. Some notable results were indication of that patients surrounded
by noise were feeling better than those who were not, and patients having their
phone screen on for a longer duration had an improved mood. It was expected that
the location data would show correlation results, but it did not. The lack of seen
correlation can be due to the problems with the location data and its converter. For
future work it could be interesting to see if the location data has correlations when
the converter is corrected. When the main study is completed or when there is more
subjects available it would be interesting to see how the separate PHQ-9 questions
correlate with different sensor data. If the control group grows big enough there
could be a possibility to split the controls into groups and see if the different groups
phone sensor data correlates with the PHQ-9 score. This could for example be done
by combining the k-means clustering and the correlation methods.

5.2 k-means clustering
It is interesting to see how the k-means clustering grouped the subjects into different
groups based on different sensor data. For noise and location data, k-means clustering
sorted most of the subjects into the same group. For screen data, patients were
sorted to the same group as controls, but there were clearly two different groups.
The communication and social application both grouped well. It can be seen as
expected that the results are similar for both communication and social application
as they overlap with each other in certain ways. It can be concluded that the k-means
clustering method is not a good method for grouping patients and controls into
different groups. However, another application of the method would be to see how
k-means clustering sorts the controls into different groups. The patients are labeled,
but the controls are assumed to have the same type of behaviour even-though they
most probably can be divided into different groups too. This could also be applied
to the patients’ data to acquire subgroups.
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5.3 Linear Discriminant Analysis and Decision Tree

Figure 81: LDA and Decision Tree classifier mean accuracy for cross-validation for
the different ranges for communication data after the rework.

Figure 82: LDA and Decision Tree classifier mean accuracy for cross-validation for
all data with monthly splits after the rework.
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Figure 83: Decision Tree for all data with monthly splits

Figure 84: LDA and Decision Tree classifier mean accuracy for cross-validation for
all data after the rework.

After analysing and writing the results section for the classification, it was seen
that the models were performing unrealistically well. Reviewing the code again a
crucial problem was found. The LDA was done on the whole dataset and not a split.
This has probably created a bias in the final model and is something that must be
considered in future studies. The correct way to build the model was however tested



74

Figure 85: Decision Tree for all data with weekly splits

on the communication data, the all data monthly and all data weekly models. The
accuracy for the model based on communication data dropped from an accuracy of 1
to which is seen in figure 81. This is not a bad result, on the contrary it is a more
desirable result, as a perfect accuracy in the small dataset would indicate overfitting.
When comparing the new trees in figures 83 and 85 to the old trees in figures 46 and
48 it is seen that there should be less underfitting, as described in Section .
For future research it will be interesting to see how the accuracy is affected by a
bigger dataset. The main study also contains more cohorts than Major Depressive
disorder, which suits the LDA method. In the future it is probably desirable to have
models trained based on the different sensor data instead of all data in one model.
This is due to the missing data in the different sensors that occur for the subjects.
Regarding the tree classifier the automatic branching will probably be sufficient, but
when the dataset is bigger, manual pruning could potentially improve the results.

5.4 kh-segmentation
Several conclusions can be drawn from the results. Firstly, the method seems suitable
for analysing the data. It finds appealing results for the given k and h.

Secondly, kh-segmentation needs a sufficient amount of data points, with regards
to both the amount of collected data and quality of data. The quality of data is
discussed in Section 3.1 and the preprocessing is discussed in Section 3.2. For the
kh-segmentation especially the time granularity in comparison to the amount of
data points is important. For example, if the granularity is at a daily level and the
collected data aggregates badly (describes several days incorrectly) due to missing
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data, the method will not produce usable results. Another example is having the
granularity at hourly level. In this example missing several hours of data will produce
gaps in the results or unusable results. If the time span is big enough in comparison
to the missing or incorrectly described days, then the kh-segmenation will just mark
the bad days as a segment and if the amount of sources is chosen well the incorrect
data can be marked as a different source. Meaning incorrect data has an own source
number h, see figures 53 and 54. This is something that has to be taken into account
in the preprocessing of the data.

When data is missing or is of poor quality the kh-segmentation will either ignore
the missing data and not change the segment or the source or mark the missing data
as a different state and source.

The different criteria are applicable for different cases. The PHQ-9 correlation
criteria works best when there is changes in the PHQ-9 score, but it can not be used
for controls or patients that have the same score in each questionnaire taken. For
these cases it could be interesting to look at the changes in the separate PHQ-9
question scores.

The BIC error measure criteria had the interesting property that is tended to be
optimal, at its lowest, when k and h were the same. This opens up the opportunity
to let the BIC error measure get higher so that the k and the h does not have to be
the same to get the most optimal result.

Comparing these criteria the PHQ-9 tend to give more granular results, with
more segments, whilst the BIC error measure criteria results in less segments.

When looking at the validation of the criteria, it is seen that when maximising
correlation for both k and h the correlation is worse than average or as good as
average. This is due to that the criteria will be maximised when it is set to the
average.

The criteria where k or h is maximised tends to set low values for both k and h.
Either k or h has always a better correlation than average.

The criteria where BIC is minimised, sets low values on both k and h. The
correlation is most often better than average. This criteria and maximising k or h
give very similar results, where the value of h usually varies by one.

When looking at all criteria it could be beneficial to let the starting value be
smaller than 10. For instance, the maximising k or h and minimising BIC criteria
could get better generalization from smaller values. The value of the smallest possible
state could be decided on the length of the time span, i.e. how much data has been
collected for the subject. There have probably been less behavioural changes in a
shorter range of time, than in a longer.

For future research it could be interesting to look at the sequences on an hourly
basis instead of days. This would however drop out the daily features, for example,
location, but could give another perspective of the subjects behaviour.

Another interesting question would be if we can hide and find different groups
in the same data. Meaning would the different behaviours for certain groups be
noticed, would they be of the same source. This could be done by combining different
subject data streams to one data stream and localizing and grouping them using
kh-segmentation.
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When writing the results section of this thesis, a bug was found in the location
data converter code. It seemed as if the longitude and latitude was calculated
incorrectly dropping a whole data channel, causing the distance measuring to be
incorrect. Hopefully a re-work and re-run of the code would be enough to improve
results. Unfortunately the data converter is outside the scope of this thesis.
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6 Summary
This thesis explored possible analysis methods for passive mobile data collected in
Mobile Monitoring of Mood (MoMo-Mood) Pilot study [68]. Exploration of the
sensor data was done by searching for correlations between the sensor data and the
PHQ-9 score. The results was that the patients showed correlation whereas controls
did not.

The k-means clustering algorithm was used for exploring how the subjects would
be sorted if they were unlabeled. The patients seem to consist of a similar group, as
they were sorted to the same group. The controls, however, were more diverse and
could perhaps be divided into smaller subgroups. This is supported by the previous
method were the patients showed correlation, but the controls did not.

The classification of patients and controls seems possible with the LDA and
Decsision Tree classification method, but due to an error in the original implementa-
tion it was hard to draw conclusions from the results of the analysis. However the
reworked implementation showed great initial results. This implementation could be
interesting to run on the main study when possible.

The kh-segmentation method seems to find the optimal segments in the sensor
data in an intuitively good way. When k and h are chosen using a suitable criteria
the behavioural changes are visible in the plots. Especially marking in the plots
how the state of h changes depending on the segment is useful. This shows which
segments show similar behaviour. The segmentation can however be too abstract to
be used in the discussions between the clinician and the patient. Further development
of the layout is desirable, if it is to be used in clinical context.

This field of study shows great promise and with more data from the upcoming
study, better understanding could be gained and a clinically usable tool could be
developed. This would help both the clinician and the patient, and ease the burden
of mental health problems.
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A K-means clustering pair plots
Bellow are pairplots of the k-means clustering results for the different features for
each sensor data:

Figure A1: Pair plot of k-means clustering results for noise data.

Figure A2: Pair plot of k-means clustering results for screen data.
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Figure A3: Pair plot of k-means clustering results for location data.

Figure A4: Pair plot of k-means clustering results for communication data.
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Figure A5: Pair plot of k-means clustering results for social data.
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